10 Reasons to Invest in Structural Analysis Software, Advance Design for Steel & Concrete Projects


Boost your knowledge and skills with Graitec’s free ADVANCE Design webinarsRegister here

Advance Design is a mature and easy to use FEM Structural Analysis solution dedicated to structural engineers operating in a BIM environment.

It fully designs any type of structure, with any kind of loads, mixing concrete, timber and steel members. It includes major code standards (Eurocodes / North American).

Below you will find 10 unique reasons why it is good to get familiar with Advance Design software.

Reason 1 – Best in Class 3D Climatic Generator

Quickly generate all 2D/3D climatic loads according to the latest updates of Eurocodes and North American codes.

Reason 2 – BIM Solution

Advance Design is part of an entire structural BIM workflow and links with Autodesk Revit and Autodesk Advance Steel for importing, exporting and synchronising projects.

Reason 3 – Model Management through Interactive Tables

Easily manage your model from interactive tables and access the data within Excel.

Reason 4 – 2nd Order Lateral-Torsional Buckling Analysis

Calculate stability of members with any cross section considering initial imperfections and warping.

Reason 5 – Broad number of Steel Connections

Design welded or bolted connections using analytical formulas or advanced FEM calculations using ADC.

Reason 6 – Master-Slave Analytical Links

Analytical links can be defined right from the modelling stage and will stay updated when iterating calculations.

Reason 7 – Methods for Seismic Analysis

Save computation time by using the RITZ solver for modal, seismic and time history analysis.

Reason 8 – Steel Members Optimisation

Optimisation of steel members is enhanced according to predefined criteria allowing you to optimise an entire project in minutes.

Reason 9 – Advanced Meshing Capabilities

Use an enhanced and powerful meshing engine to refine meshes whilst considering geometrical constraints.

Reason 10 – Advanced Reports

Customise parametric reports and have these automatically update, saving hours of time when it comes to generating technical documentation.

If you want to learn more about Advance Design, join Advance Design Week – free webinars sessions from 19 till 23 of October!

Are you structural enginner? Are you doing construction projects ? You want to improve in following areas?

– Complex projects with advanced analyses
– Complex design for concrete and steel structures
– BIM Workflow
– Multi-material projects
– Designing international projects
– Steel connection design
– Modeling complexity
and many, many more…

If YES, join Advance Design Week and boost your knowledge and skills with free webinars provided by our professionals!

If you are Advance Design User – Gain priceless knowledge about  ADVANCE Design and be the first to know about the new features during Advance Design User Summit 2020!

Dear Advance Design users,we would like to thank you for being a Graitec customer and creating great, innovative and complex projects using our software. Maintaining a positive relationship with you is crucial for us, as is developing the new functionalities of our software according to your needs and indications.
In order to thank you for your loyalty, we would like to invite you to our Advance Design User Summit 2020 – an event where you will have the opportunity to gain advanced technical knowledge provided by our professionals, as well as to learn about the upcoming novelties in Advance Design software.
We invite you to read the agenda and register your place!

Advance Design SIMULATE Team

Climatic Loads Generator – create automatically climatic loads (i.e., wind and snow) and their corresponding load cases


Modeling and defining the values of all climatic loads is a time-consuming process and a source of possible errors. The amount of time spent for the calculation of climatic effects can be significantly reduced, while assuring more accurate results. You can obtain in no time the climatic loads intensity and distribution on your structure using a fast and easy-to-use Advance Design function: the 3D Climatic loads generator.

Implemented Eurocode 1 and National specific standards

Advance Design provides several climatic standards such as NV 2009 (France), NP082-04 / CR1-1-3-2005 (Romania), Eurocode 1, Canadian (NBC2010 or 2015) and US (ASCE 7-10) codes, with different national appendixes:

  • General
  • France
  • United Kingdom
  • Romania
  • Germany
  • Czech Republic
  • Poland
  • Slovakia

The choice is done in the global project’s settings.

Wide applicability

Automatically generated wind loads and snow loads on a structure
Automatically generated wind loads on a signboard

The structure and roof shape is taken into account, therefore you can create loads on portal frames, parapet walls, lattice structures, scaffolding elements, buildings with dominant face, panels, horizontal roofs, two slopes roofs, isolated roofs, protruding roofs, roofs with awning, etc.

Examples of automatic generation of climatic loads on various structures

Wind loads on multiple roofs

Snow loads on multiple roofs

Wind loads on awning

Snow accumulation on portal frames with a negative slope

Snow accumulation on portal frames with a negative slope

You can automatically generate all the climatic loads on a structure in an efficient way, which saves a great amount of time:

  • Select the appropriate climatic standard.
  • Generate windwalls on 3D structures.
  • Create load case families for snow or / and wind and configure the advanced properties (if necessary).
The properties window for the snow and wind case families

Access the snow and wind loads values map to define the structure location.
With a single click, the values of the wind speed, wind pressure, snow load and exceptional snow loads on the structure faces and roof are automatically defined according to the selected region:

Automatically updated values, according to the selected structure location Eurocode 1 with French Appendix: Snow EN 1991-1-3 NF and Wind EN 1991-1-4 NF

Launch the climatic generator

The climatic load cases and loads are automatically displayed in the graphic area and also, in the Pilot, in the corresponding loads family, providing access to an efficient management:

Accurate and prompt update

If the structure or the loads properties are modified after generating the climatic loads, a single click is enough to update the loads, according to the new conditions.

Boost your knowledge and skills with ADVANCE Design Connection free webinars!


If you’re a structural engineer looking for powerful steel connection design software, then make sure you tune into our free Advance Design Connection week.

Boost your knowledge and skills with Advance Design Connection free webinars! Advance Design Connection Week is a series of webinars dedicated to BIM Workflow based on Graitec products!

About Advance Design Connection

Advance Design Connection is a powerful analysis solution for 3D Steel connection, fully integrated with Advance Design which is a global structural analysis software including a powerful 3D climatic generator, advanced stability checks and steel members design and optimization. Advance Design Connection can design all types of 3D connections using internal forces on members coming from Advance Design. It provides precise checks, results of strength, stiffness and buckling analysis of a steel joint. Joints are checked according to Eurocodes and North American codes (EC & AISC). Templates for most-used connections are available as well as wide range of predefined hot rolled and sheet welded members.

Join Advance Design Connection Week – free webinars which will be held in English and French.

During the webinars we will cover the following areas:

  • The workflow from Advance Design to Advance Design Connection –

In this webinar we will demonstrate how to export several connections of a steel structure which is modelled and analyzed in Graitec Advance Design (AD), to Graitec Advance Design Connection (ADC) software. You will see the automatic mapping procedure of sections and as well imported internal forces from AD. In the next step, we will create the connection geometry in ADC and run the analysis and code check process. Finally, we will go through the results of the analysis and status of the connection in ADC.

  • The workflow from Melody to Advance Design Connection – 

We will show the export of a real building attachment calculated with Advance Design to Advance Design Connection (ADC). Then the export of tubular structures from Melody portal to Advance Design Connection. In Advance Design Connection where we will automatically retrieve the profiles and the efforts of Advance Design or Melody, we will build the fasteners in a few minutes and exploit the results.

  • The workflow Advance Design +Advance Steel to Advance Design Connection – 

This webinar will cover the full workflow of steel connection design using Graitec Advance Design (AD), Autodesk Advance Steel (AS) and Graitec Advance Design Connection (ADC). First, we will export the structural node from AD to AS to transfer the sections, the geometry of the connection will be modelled in AS and exported to ADC. Then we will demonstrate how to import internal forces directly from AD into ADC.

  • The new version of Graitec Advance Design connection (ADC 20.1) – 

The new version of Graitec Advance Design connection (ADC 20.1) will be released soon. In this presentation we will focus on new features and functionalities of the new version. Some of the highlights are: Cost estimation  /   Pre-design tool   /   Check of missing welds

Why is it worth participating in Advance Design Connection Week?

  • No marketing – 100 % practice 
  • Knowledge provided by professionals
  • Examples of effective usage of software
  • Priceless knowledge gained for free

Advance Design Connection Workflows:

  • ANY TOPOLOGY

No limits in how many connections there are in the joint and how they are put together. Shape is defined by project requirements, not by software capabilities

  • ANY LOADING

All forces are analyzed. The overall check of the joint takes into account interactions between all the beams and connections. Engineers stay on the safe side all the time.

  • IN MINUTES

The whole design and check process is kept short enough to be a part of everyday work of structural engineers and fabricators all around the world.

Save the date and register to Advance Design Connection Week!

Watch the video – Analyse and Design Complex Steel Connections using Graitec Advance Design Connection

BIM Workflow for a structure designer


Advance Design, even though it’s a FEM analysis software, has a wide range of possibility for importing/exporting model data. Structure designer even when not taking an active part in BIM process can profit from it by importing a model to his scturcutral software.

The most important data exchange formats are *GTCX and *SMLX, which allow us to fully use model data prepared in Graitec and Autodesk environment such as Revit, Advance Steel or BIM Designers. Using *IFC, *SDNF or *CIS2 lets us also import a model from any other software.

In this article I would like to focus on a different format. Possibility to import or export model to the library will give us a interesting work scenario. Using this, we can export a part of a model to a fresh file, for example extract a single story from a multi-story building. In the other way we can join multiple projects into a one, whole structre. This will come in handy when you need to join separated model that were imported from different softwares using many exchange formats. We can also extract some parts of model or even single elements to be later used in another project such as complicated trusses, segments, roofs etc.

Using a library can also allow us to open model created in newer version of Advance Design in older ones.

Import/export *abq library

In a few examples I’ll show advantages of using a library export.

Concrete building model in Advance Design imported from Revit

Here you can see a 6-story residential building of a concrete structre. It was imported directly from Revit. All loads are already generated and the model is ready to be calculated.

We will use a library export to extract a single storeys or slabs for a detailed analysis. I select necessary objects – in this case a whole story with loads and upper elements and I choose a saving path. I can also pick a reference point which will allow me to precisely join models if needed. If a reference and insertion point is the same, the position of a structure won’t change in the global cooridinate system.

Libary export

This exported part can now be imported into any project or a fresh file if we want to work on this specific story.

Single story imported to a fresh file

The is no loss of a geometry, elements proporties and loads. I can work on this story as it was a separated, newly created model. Intrestingly, I can later import it again in my base project if I’ve done any changes to this story.

This will be essential for a designers that work using different environments and are importing parts of a structure in *IFC format. Theoretically we can’t import next files into the same model, however, we can use a library to join them all.

Joining separated files into a one model

So imagine the opposite situation. I have 2 models which are analyzed separately since they don’t influence much on each other. However, they are both based on a common garage story, so for a foundation slab calculation I need to consider them in a one model.

2 separated models of aboveground buildings

Right now using a library import I can insert these 2 buildings to another file which consiste of garage story and foundation slab.

Connecting models using insertion points

The garage story can be modeled or imported from different software. This example model was imported from Revit as 3 separated parts. Very important to mention is that every element get its individual GTC ID and its kept in each model. This allows us to synchronize a Revit model or export results, for example to do the reinforcement detailing using BIM Designers solution.

Final model of 3 joints part

Different possibilities of using library

The simplest way is to export some already prepared structure elements which we used in previous projects. We can import them to next file and modify them if needed instead of creating whole thing once again.

Library export will also come in handy when we need for some reason to open a model in older Advance Design version. Customary modesl are converted automaticaly to a newer version, however this doesn’t work the opposite way.

New in Advance design 2021: push over analysis


A new advanced analysis type is available on Advance Design 2021 – the Pushover analysis.

The pushover is a method to predict the non-linear behavior of a structure under seismic loads. It can help demonstrate how progressive failure in buildings really occurs, and also identify the mode of final failure. The advantage of the pushover analysis is that the material nonlinearity and plastic hinging are considered but without the complications of the dynamic behavior.
The principle of the pushover method is applying lateral loads to the structure in an incremental manner and monitoring the occurrence of non-linear behavior (at fixed points called plastic hinges) in order to finally obtain a base shear versus control node displacement diagram.

Introduction to the Pushover method

The pushover analysis consists of several steps of calculations that need to be conducted in the following order.

  • Determination of the seismic lateral load pattern

In order to perform the pushover analysis, we need to increment the lateral loads following a specified fixed pattern. There are many possible load patterns described in the literature and seismic standards. For example, loads can be applied on the gravity center of each story linearly increasing in height, where load values are based on the seismic base shear force.

  • Defining plastic hinges in the model at locations where plasticity is expected to occur

During the pushover analysis the loads are incremented on the structure while plastic deformations are being constantly monitored. As plastic deformations are most likely to occur at specific locations, we define the non-linear behavior locally, on elements, via the plastic hinges, whilst maintaining the elastic behavior on all other elements. Generally, the behavior of plastic hinges is provided by seismic codes, in the form of tables or formulas that make it possible to construct the characteristic curves for plastic hinges. In the case of concrete elements, characteristic curves strongly depend on the provided reinforcement. For this reason, an initial classic linear seismic analysis should be conducted prior to the pushover analysis in order to provide an initial value for sections reinforcements.

  • Pushover calculations

The pushover analysis is a list of sequential actions. First, linear finite element analysis is run. One of the results used further on is the reinforcements of elements, used in defining the characteristic curve of plastic hinges. Next, the lateral load pattern is obtained and it applies to the structure. Then, in an iterative process, these loads are gradually increased. At every increment the internal forces at the location of potential plastic hinges, the base shear and the control point displacement are monitored. When the internal forces at a potential plastic hinge reach a yielding level, the plastic hinge is activated according to its characteristic curve previously defined. The stiffness matrix is adjusted accordingly, and the finite element calculation is continued. The incrementing lateral load is continued, and the matrix update process is repeated for all activated plastic hinges. Calculations are continued until either: the target displacement is reached; the structure becomes a mechanism; analysis does not converge anymore, or a maximum number of steps is reached.

At every step of incrementation the displacement of a control point on the structure is recorded with its corresponding base shear value. This data is then plotted on a curve, called the pushover curve. It is initially linear at relative low values of base shear (the structure is still elastic), then becomes non-linear for higher values of base shear due to plastic deformations occurring in the structure.

Pushover analysis on Advance Design
Main features of the Pushover analysis in Advance Design 2021:

  1. Extended definition of Plastic Hinges
    – Plastic hinges (linear elastic-perfect plastic) can be easily defined on linear elements;
    – Available on the axial (Tx) and flexural (Ry and Rz) degrees of freedom;
    – Can be defined automatically and fully customizable with respect to FEMA 356 and EC8-3;
    – Automatic definition can be done for steel I – cross sections (IPE, HEA, W, …) and concrete Square, Rectangular and T-shaped cross sections;
    – For concrete element plastic hinges can be computed using the real reinforcement (for Eurocode) or the theoretical reinforcement (North America codes);
    – Can be user defined – allows for applying plastic hinges on any type of cross section, for both steel and concrete linear elements.
    2. Automatic generation of pushover loads with extensive parameterization capabilities
    – Pushover point & surface loads are defined at each floor;
    – Possibility for selecting the load distribution on the height of the structure within several types: Concentrated, Uniform distributed, Triangular distributed, Parabolic distributed, User defined (fully customizable);
    – Possibility for computing the maximum total lateral load by using the Percentage of the total gravity loads, by Seismic base shear force on X, and by Seismic base shear force on Y;
    – Up to 8 load cases can be defined: 2 distributions (as required by FEMA356 and EC8-3) and 4 directions (+/-X, +/-Y).
    3. Wide range of available Results
    – FEM results and reports;
    – The pushover force-displacement curve;
    – Reports tables with status of hinges and the overstrength ratio (αu/α1);
    – Graphical results showing the status of hinges at each load step.

Let’s take a closer look at the next steps of the process. We start from the stage when a model is already prepared for linear statics calculations (including defined geometry, levels, loads, etc.).

Definition of plastic hinges
In order to perform the pushover analysis, the user first needs to define the plastic hinges at locations where they are expected to occur (ends of beams), or at locations where their arise needs to be monitored (ends of columns). The plastic hinges can be defined on individual linear elements from the properties panel.

The user is able to select the degrees of freedom for which this hinge is applicable, separate for each extremity. The ID name of a plastic hinge is generated automatically, and it consists of prefix PLH-L (plastic hinge on linear element), ID of the element, the extremity (1 or 2) and the type of the element (B – for beams, C for columns). The definition of parameters of the plastic hinge can be done by using a dialog opened by a button on the Definition property.

In a case when the user decides that parameters should be calculated automatically, then he can select the code (EC 8-3 or FEMA 356) and plastic hinge type. The available types (steel or concrete beams and columns) depend on the selected code and degree of freedom. Note that some of the parameters are computed only during the next stage, during the pushover analysis. In a case when the user decides to define the properties of the plastic hinge manually, the Definition should be set to User defined. Then, each property can be unlocked and edited individually.
When plastic hinges are applied to elements, they can be presented graphically (on the descriptive model) by using a grey symbol.

Definition of Pushover loads
The next stage is the creation of pushover load cases and generation of pushover loads.
For this, a new Pushover load case family type can be defined from the Create load case family. On its property list we can set the basic data for load generation such as: the distribution type, the point of application and the directions of the loads.

Looking on the distribution types – there are several distribution types of the pushover forces on the height of the structure available:

Using the right click menu on the Pushover load case family we can then automatically generate the pushover load cases and loads. On the property list of each generated pushover load case we can set details related to the maximum total lateral load.
The maximum total lateral load is the cumulated sum of the lateral loads applied on the last step of the pushover analysis. This load can be defined either as the imposed value or as a percentage of the load applied on the structure, prior to the pushover. For each load case, a different definition of the maximum lateral load can be selected.

The Master node is used for tracking the displacement of the structure and generating the pushover load-displacement curve. This node can be either defined (as an ID of a mesh node), or the Max displacement option can be used. In this case, the maximum displacement, on the direction of the pushover load case, at each step of the analysis will be used for plotting the pushover curve.
Similar to the classical NL analysis, additional calculation conditions can be set for the PushOver Analysis as well. The analysis could either run until the total lateral load is applied (last step) or it could be stopped earlier due to the instability of the non-linear calculations – usually when a mechanism state is reached. In this case the results will be available for the calculated steps.

Calculations
The pushover analysis is a list of sequential actions, activated by a dedicated Pushover checkbox control in Calculation sequence dialog.

During the process several steps are performed automatically, including:

· a standard linear static and seismic calculation;
· the design of steel linear elements / design of concrete linear elements (including the real reinforcement);and finally, the main non-linear static calculation for the pushover load cases with incrementing lateral loads and an appropriate activation of plastic hinges.

Results
After successful completion of pushover calculations, a set of different types of results is available.
FEM results
As with normal static calculations, FEM results such as displacements and internal forces are available. The results can be checked as for the non-linear calculations for each of the subsequent calculation steps.

The pushover force-displacement curve
Using a new Pushover results curve command, available on the Results ribbon, a pushover capacity curve can be generated. It displays a relationship diagram of the displacement of the node with respect to the total applied lateral load.

Reports tables
For the results from the pushover analysis a set of new dedicated report tables is available, including:

  • Flexural plastic hinges status by load step
  • Axial plastic hinges status by load step
  • The overstrength ratio (αu/α1)

Graphical results showing the status of hinges at each load step
A new Pushover Results entry is available on the FEM results selection that allows selecting the Hinge status result for linear elements. When activated, it shows the status of defined plastic hinges for selected step of the selected pushover case. The status is displayed by using colors.

Steel Design


Precise and intuitive steelwork functions are the result of over 25 years of experience in structural analysis. When it comes to modeling, analyzing and optimizing steel structures, Advance Design is a high-end solution that integrates all these processes within the same modern and easy-to-use interface.

Available standards

The Steel Design Expert performs an advanced analysis and optimization of steel elements according to the selected standards. The available steelwork standards are CM66 (France), NTC 2008 (Italy), ANSI/AISC 360-10 (USA), CAN/CSA S16-14 (Canada) and Eurocodes 3 with several national appendixes:

  • France
  • United Kingdom
  • Romania
  • Germany
  • Poland
  • Slovakia
  • Czech Republic
  • General

Complete libraries of materials and cross sections

Advance Design provides complete libraries of materials (e. g., EN 10025-2, EN 10210-1, EN 10219-1) according to chapter 3 of EN 1993-1-1 and the possibility to define materials with custom properties. For cross sections, libraries such as European Profiles, Otua, UK Steel Sections and Autodesk Advance Steel Profiles are available. Also, you have the option to define libraries with customized cross-sections and even compound cross sections.

For advanced editing, visualization and calculation of geometrical characteristics of any type of cross section, Advance Design provides a specialized module: Cross Sections. This module can base the calculation (including torsionnal inertias and shear reduced sections) either on analytical formulas or on finite element analysis depending on the complexity of the cross section.

Cross section libraries

Advanced modeling

A large number of CAD functions are available for the easy modeling of steel structures. In addition, it is possible to automatically create trusses, portal frames and vaults which are available in Advance Design libraries. Using the corresponding structure generator, you can define the origin and the dimensions of the structure, the material and cross section of the elements, etc.

Automatically generated portal frame

Since the version 2017, Advance Design includes the Steel Structure Designer. The Steel Structure Designer  incorporates an extensive range of building definitions and tools enabling users to configure complete structures in seconds, from standard building shapes used in industry (platforms, steel halls), to more complex models, such as office buildings or structures with curved roofs, in seconds.

Complete customization of steel elements properties

The properties list for steel elements includes all the required parameters for deflection, buckling and lateral-torsional buckling verification. Castellated beams can be defined and designed with the ACB+ module (Arcelor Cellular Beams).

Detailed calculation assumptions

The calculation assumptions referring to the steel elements attributes can be defined for each element or selection of elements, using the corresponding element(s) properties list.
For a fast definition of the steel elements properties, you can define design templates that can be applied on a selection of elements. Several design templates can be used in the same model. The design templates can be saved as XML files and imported in different projects.

The calculation assumptions referring to the calculation type, the steel optimization, the buckling parameters, the calculation sequences, etc. can be globally defined through a single operation, for all steel elements of the model:

Defining the steel calculation assumptions

The design assumptions can be modified at any time, in the modeling step and in the analysis step (when modifying the assumptions during the analysis step, it is necessary to rerun the steel calculation).

Accurate steel verification

The steel expert performs the steel verification, including the automatic buckling length computation and the automatic classification of cross sections according to Eurocodes 3. It provides access to results concerning the deflections verification, the cross section resistance, the element stability (buckling and lateral-torsional buckling) and the optimization of the steel shapes.

The command line informs about each step of the process. If errors are found during the calculation, the verification messages are displayed on the command line along with the IDs of the elements to which the messages refer.
When the calculation process is completed, you have access to advanced result verification and a multitude of tools for customizing the display of the graphic results in the most suitable way.

Steel elements stability results (Work ratio)

Reliable fire verification

Advance Design can perform the fire verification of steel elements according to §4.2 (simplified method) of EN 1993-1-2 as fire resistance (§4.2.3) and critical temperature (§4.2.4).
The software compares efforts given by frequent combinations with the maximum effort the element can handle at a given temperature.
The definition of the fire verification conditions is a fast and easy process. You only have to:

  • Specify the fire exposure period:
  • Select the number of faces exposed to fire:

When the calculation is completed, the work ratios given by the fire verification are displayed on a specific tab of the shape sheet.

Maximize the efficiency of the materials consumption

The optimization process offers solutions for an efficient management of the materials consumption.
You have full control of the optimization conditions: you can define the optimization mode, the suggestions process, the iteration process, etc.

The Stored shapes command allows you to configure the list of available shapes from which the steel expert may choose the optimal ones.

The steel expert compares the work ratio of the steel elements and suggests (if necessary) more adequate cross sections, that would correspond to the defined conditions.

For better visualization, the elements with a higher / lower work ratio than specified are displayed in red.

Suggested solutions for cross section optimization of steel elements

Advanced calculation reports

The shape sheets command allows you to view all the available results for a selected steel element: cross section properties, deflections, strength, stability, fire resistance and cross section class according to Eurocodes 3 in one dialog box.

You can generate a report with these results starting from the element’s shape sheet. This result is complete with all verifications and also mentions the corresponding article in the Norm.

The steel verification report offers a complete diagnosis of the model in different outputs: tables, texts, graphical post-processing. The report can be customized to suit your requirements.

Advanced calculation reports

Once the report content has been defined, there is no need to recreate the calculation report when the model undergoes any modification. The report content, including post-processing views, automatically updates at each calculation iteration (if specified) while preserving all the settings previously made:

Enabling the reports update when launching a new analysis model

New super-element concept


The release 2021 of Advance Design features a new concept called “super-element”. The super element is a compound object which consists in a set of individual linear elements grouped for a design purpose, for example to check the limit deflection of the rafters beams on a steel frame or the maximal deflection on a continuous column across several levels.

The definition of a super element can be done in many ways, including by using the Create command from the right-click menu or from the ribbon, as well as using the List property, available on the property list of linear elements:

When creating the super element, Advance Design will check several conditions such as materials, cross-section, orientation. Each newly created super element has its own unique ID number. It can be used, among other things, for selection or for displaying on a model view, thanks to the new type of annotation for linear elements and the possibility to display colours per super element:

The super element concept is used for the standard check of steel elements: therefore, several new options are available on design parameters of steel elements. As soon as the user enables the “Super element” verification option is the property list, the corresponding deflection group of properties is available for editing, properties which applies to the entire super element:

The results of the deflection verification can be checked separately for the element and the super element either graphically, using the postprocessing diagrams for deflections, or on the Deflection tab on the Shape sheet dialog:

In a similar way the list of available options for the calculation of the Lateral-torsional buckling length (on the Lateral-torsional buckling dialog) has been updated. Note, that the content on the list depends on whether the dialog is opened for a super element or an element that is not a part of any super element. When opened for a super element, the list contains only two items Auto calc and super element ratio.

You can have more details about this new feature on the technical what’s new document available on your Graitec Advantage account (advantage.graitec.com).

Stresses and Crack Openings


Advance Design BIM system is dedicated to structural engineers who require a comprehensive solution for simulating and optimizing all their projects. It includes a user-friendly structural modeler, automatic load and combination generators, a powerful FEM analysis engine (static, dynamic, time history, non linear, buckling, large displacement analysis, etc.), comprehensive wizards for designing concrete and steel members according to Eurocodes, efficient result post-processing, and automatic report generators.

Some of the features of Advance Design are a new design module for timber frames to Eurocode 5 (German, English, French, Romanian and Czech National Appendices), calculation of cracked inertia for linear and planar elements, implementation of the Baumann method for reinforcement plates to Eurocode 2, verification of stresses and crack openings as a function of the real reinforcement implemented in the element for Eurocode 2 (EN 1992-1-1).

Main information regarding stresses and crack openings

Seismic design of structures is mainly focused on developing a favorable plastic mechanism to render the structure strength, ductility, and stability.

The behavior of a structure regarding the action of a major earthquake is anything but ductile, taking into account the oscillating nature of the seismic action and the fact that plastic hinges appear rather randomly. To achieve the requirements of ductility, structural elements, and thus the entire structural system must be able to dissipate the energy induced by the seismic action, without substantial reduction of resistance.

Both Romanian seismic design code P100-1/2006 and Romanian standard SR EN 1998-1, provide a method for prioritizing structural resilience (“capacity design method”) in order to better choose the necessary mechanism for dissipation ofenergy. Determination of the design efforts and the efforts for elements will be in accordance to the rules of this method.

Discover more technical details here

Design of Flat Slab structures


Flat slabs are more and more used nowadays, given their structural, architectural and MEP benefits. Of course, this comes with a list of design particularities – negligible in typical framing structures (such as punching shear) – that the structural engineer must address in order to achieve safeness and performance.

Some of the main benefits of using flat-slabs:

  •    Reduced manual labour for concrete formwork
  •    Reduced quantities of formwork
  •    Smooth interior surface that serves architects and also mechanical engineers

Discover more technical details here