Stresses and Crack Openings

Advance Design BIM system is dedicated to structural engineers who require a comprehensive solution for simulating and optimizing all their projects. It includes a user-friendly structural modeler, automatic load and combination generators, a powerful FEM analysis engine (static, dynamic, time history, non linear, buckling, large displacement analysis, etc.), comprehensive wizards for designing concrete and steel members according to Eurocodes, efficient result post-processing, and automatic report generators.

Some of the features of Advance Design are a new design module for timber frames to Eurocode 5 (German, English, French, Romanian and Czech National Appendices), calculation of cracked inertia for linear and planar elements, implementation of the Baumann method for reinforcement plates to Eurocode 2, verification of stresses and crack openings as a function of the real reinforcement implemented in the element for Eurocode 2 (EN 1992-1-1).

Main information regarding stresses and crack openings

Seismic design of structures is mainly focused on developing a favorable plastic mechanism to render the structure strength, ductility, and stability.

The behavior of a structure regarding the action of a major earthquake is anything but ductile, taking into account the oscillating nature of the seismic action and the fact that plastic hinges appear rather randomly. To achieve the requirements of ductility, structural elements, and thus the entire structural system must be able to dissipate the energy induced by the seismic action, without substantial reduction of resistance.

Both Romanian seismic design code P100-1/2006 and Romanian standard SR EN 1998-1, provide a method for prioritizing structural resilience (“capacity design method”) in order to better choose the necessary mechanism for dissipation ofenergy. Determination of the design efforts and the efforts for elements will be in accordance to the rules of this method.

Discover more technical details here

Design of Flat Slab structures

Flat slabs are more and more used nowadays, given their structural, architectural and MEP benefits. Of course, this comes with a list of design particularities – negligible in typical framing structures (such as punching shear) – that the structural engineer must address in order to achieve safeness and performance.

Some of the main benefits of using flat-slabs:

  •    Reduced manual labour for concrete formwork
  •    Reduced quantities of formwork
  •    Smooth interior surface that serves architects and also mechanical engineers

Discover more technical details here